Facile double-functionalization of designed ankyrin repeat proteins using click and thiol chemistries.

نویسندگان

  • Manuel Simon
  • Uwe Zangemeister-Wittke
  • Andreas Plückthun
چکیده

Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A rapid, site-selective and efficient route to the dual modification of DARPins† †Electronic supplementary information (ESI) available: LC-MS spectra for all reactions with proteins described herein. See DOI: 10.1039/c4cc00053f Click here for additional data file.

Designed ankyrin repeat proteins (DARPins) are valuable tools in both biochemistry and medicine. Herein we describe a rapid, simple method for the dual modification of DARPins by introduction of cysteine mutations at specific positions that results in a vast difference in their thiol nucleophilicity, allowing for clean sequential modification.

متن کامل

Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension.

The generation of drug conjugates for safe and effective tumor targeting requires binding proteins tolerant to functionalization by rational engineering. Here, we show that Designed Ankyrin Repeat Proteins (DARPins), a novel class of binding proteins not derived from antibodies, can be used as building blocks for facile orthogonal assembly of bioconjugates for tumor targeting with tailored prop...

متن کامل

Designed ankyrin repeat proteins (DARPins) from research to therapy.

Designed ankyrin repeat proteins (DARPins) have been developed into a robust and versatile scaffold for binding proteins. High-affinity binders are routinely selected by ribosome display and phage display. DARPins have entered clinical trials and have found numerous uses in research, due to their high stability and robust folding, allowing many new molecular formats. We summarize the DARPin pro...

متن کامل

Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups.

The ability to produce robust and functional cross-linked materials from soluble and processable organic polymers is dependent upon facile chemistries for both reinforcing the structure through cross-linking and for subsequent decoration with active functional groups. Generally, covalent cross-linking of polymeric assemblies is brought about by the application of heat or light to generate highl...

متن کامل

Controlling topological entanglement in engineered protein hydrogels with a variety of thiol coupling chemistries

Topological entanglements between polymer chains are achieved in associating protein hydrogels through the synthesis of high molecular weight proteins via chain extension using a variety of thiol coupling chemistries, including disulfide formation, thiol-maleimide, thiol-bromomaleimide and thiol-ene. Coupling of cysteines via disulfide formation results in the most pronounced entanglement effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2012